Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions.

نویسندگان

  • K Hausen
  • C Wehrhahn
چکیده

The role of 2 sets of interneurons in the optic lobes of blowflies in visual course control was studied by means of brain lesions. The first set comprises the cells HS and H2, which respond to global horizontal motion. The second set are the FD-cells, which respond selectively to local horizontal motion. All these cells are output neurons of the third optic ganglion of flies and are thought to be coupled via descending neurons to the flight motor system. In 2 series of experiments specific cells of these 2 sets were inactivated by microsurgical brain lesions L1 and L2 respectively. The effects of the lesions on visual course control were tested by measuring the yaw torque responses of the animals in restrained flight before and after the operation. The flies were stimulated in these tests with monocular and binocular motion of periodic gratings moving in either the horizontal or the vertical direction. Lesion L1 in the right side of the brain inactivates the right HS-cells and the left H2- and FD-cells. This leads to a complete block of the response to binocular clockwise horizontal motion and a reduction of the response to monocular motion from front to back on the right side of the animal. Application of L1 also leads to a pronounced response to binocular motion from front to back not observed in normal animals. The response to monocular vertical motion is unaffected. Lesion L2 reduces all responses to monocular and binocular horizontal motion present in normal animals. The behavioral effects of the lesions are highly specific and consistent with predictions based on the well-known anatomical and physiological properties of the neural circuitry investigated. The results demonstrate directly that the HS-, H2-, and FD-cells control motion-induced steering maneuvers in flight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Control of Wing Coordination in Flies

At the onset of each flight bout in flies, neural circuits in the CNS must rapidly integrate multimodal sensory stimuli and synchronously engage hinges of the left and right wings for coordinated wing movements. Whereas anatomical and physiological investigations of flight have been conducted on larger flies, molecular genetic studies in Drosophila have helped identify neurons that mediate vari...

متن کامل

The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila.

Fruit flies respond to panoramic retinal patterns of visual expansion with robust steering maneuvers directed away from the focus of expansion to avoid collisions and maintain an upwind flight posture. Panoramic rotation elicits comparatively weak syndirectional steering maneuvers, which also maintain visual stability. Full-field optic flow patterns like expansion and rotation are elicited by d...

متن کامل

The Initiation and Control of Rapid Flight Maneuvers in Fruit Flies1

SYNOPSIS. Fruit flies alter flight direction by generating rapid, stereotyped turns, called saccades. The successful implementation of these quick turns requires a well-tuned orchestration of neural circuits, musculo-skeletal mechanics, and aerodynamic forces. The changes in wing motion required to accomplish a saccade are quite subtle, as dictated by the inertial dynamics of the fly’s body. A ...

متن کامل

The natural history of antibiotics

sensory systems are weighted and at which stage the combination takes place is still under investigation. But it seems that, at least in the fly, such integration occurs quite early on in the visuo-motor pathways, which helps the animal to keep its gaze level and remain stable in the air during rapid movements but also when slowly drifting. What is the point in studying the ocelli and other ins...

متن کامل

A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila.

To navigate through the world, animals must stabilize their path against disturbances and change direction to avoid obstacles and to search for resources [1, 2]. Locomotion is thus guided by sensory cues but also depends on intrinsic processes, such as motivation and physiological state. Flies, for example, turn with the direction of large-field rotatory motion, an optomotor reflex that is thou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 1990